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ABSTRACT

Differences between forecasts and observations at eight atmospheric river observatories (AROs) in the

western United States during winter 2015/16 are analyzed. NOAA’s operational RAP and HRRR 3-h

forecasts of wind, integrated water vapor (IWV), integrated water vapor flux (IWV flux), and precipitation

from the grid points nearest the AROs were paired with AROobservations presented in the NOAA/Physical

Sciences Division’s water vapor flux tool (WVFT). The focus of this paper is to characterize and quantify the

differences in the WVFT observations and forecasts. We used traditional forecast evaluation methods since

they were compatible with the design of the tool: a near-real-time visual depiction of hourly observed and

forecasted variables at a single location. Forecast root-mean-squared errors (RMSEs) and unbiased RMSEs,

standard deviations of the observed and forecasted variables, and frequency bias scores (FBS) for all of the

fields, plus equitable threat scores for precipitation, are presented. Both models forecasted IWV at all AROs

and the winds that drive orographic precipitation at most AROswithin a reasonable range of the observations

as indicated by comparisons of the standard deviations and RMSEs of the forecasts with the standard de-

viations of the observations and FBS. These results indicated that forecasted advection of moisture to the

stations was adequate for generating precipitation. At most stations and most hourly precipitation rates, the

HRRR underpredicted precipitation. At several AROs the RAP precipitation forecasts more closely

matched the observations at smaller (,1.27mmh21) precipitation rates, but underpredicted precipitation

rates . 2mmh21.

1. Introduction

Since 2007, the Physical Sciences Division (PSD) of

the National Oceanic and Atmospheric Administration’s

(NOAA) Earth System Research Laboratory (ESRL)

has provided an online water vapor flux tool (WVFT),

with observations and forecasts available in near–real

time (https://www.esrl.noaa.gov/psd/data/obs/datadisplay/).

The WVFT displays of measurements and 3-h forecasts

are useful for predicting precipitation at several loca-

tions in the westernUnited States, indicating when these

locations are at risk for heavy precipitation. The tool

also provides a quick visual check of whether the models

have been accurately predicting precipitation, winds,

and moisture advection during the last 48 h at each site.

The WVFT is a product of years of PSD precipitation

observations and research related to the midlatitude at-

mospheric dynamics and physical processes that produce

extreme precipitation events. The scientific foundation

for the development of the tool is based on results from

key papers from several major field projects, including

the California Land-falling Jets Experiment (CALJET;

Ralph et al. 1999, 2003, 2004; Neiman et al. 2002), the

Pacific Land-falling Jets Experiments (PACJET 2001–

03; Neiman et al. 2005, 2006; Ralph et al. 2005), and the

Hydrometeorology Testbed–West (HMT-West; Ralph

et al. 2010; White et al. 2013, 2015). Neiman et al. (2009)

and White et al. (2012, 2013) explain the details of the

measurements at atmospheric river observatories (ARO)

where the measurements that support the WVFT occur,

and the scientific background behind the development

of the tool. The observations analyzed in this paper were

originally developed and supported by the NOAA Hy-

drometeorology Testbed (Ralph et al. 2013), and, as aCorresponding author: Lisa S. Darby, lisa.darby@noaa.gov
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legacy of HMT-West and other work (Ralph et al. 2014),

PSD and partners continue to maintain AROs, and thus

the WVFT, in the western United States.

Originally, the WVFT was a web-based situational

awareness and diagnostic tool that included a 24-h time

series of hourly averaged near-real-time observations

and thresholds of key variables indicating when ob-

served conditions were favorable for potential extreme

precipitation (Neiman et al. 2009). The tool has since

evolved to include 48 h of observations and thresholds,

and, beginning in 2014, 3-h forecasts of the same

meteorological variables shown in the observation

portion of the WVFT. The observations, thresholds,

and forecasts are all components of the WVFT. The

WVFT updates hourly in near–real time, providing a

concise display for forecasters to assess low-level

advection of column-integrated water vapor toward

mountainous terrain that may produce orographic pre-

cipitation (Neiman et al. 2009).

The observations are ingested into the WVFT from

the collocated instruments that comprise anARO (White

et al. 2012, 2013, 2015): radar wind profiler, snow-level

radar, GPS for integrated water vapor (IWV), and stan-

dard surface meteorology measurements. Observations

displayed on theWVFT include wind profiles, snow level,

upslope wind speed (derived from the wind profiles),

IWV, integrated water vapor flux (a product of the

upslope wind speed and the IWV), and precipitation

(Fig. 1).

Twelve hours of forecasts of the same meteorologi-

cal variables shown in the observation portion of the

WVFT, with a 3-h lead time, are appended to immedi-

ately follow the last hourly observation (designated by

a vertical line in the wind profile panel). Note that fol-

lowing wind profiler convention, time increases from

right to left along the x axis. This arrangement allows

the forecaster to track the ‘‘advection of coherent at-

mospheric features from west to east in a traditional

meteorological framework’’ (Neiman et al. 2009) and to

quickly determine in near–real time if the 3-h forecasts

have been consistent with the observations. Forecasts

are available from these NCEP operational forecast

models: 1) the Rapid Refresh (RAP) and 2) the High-

Resolution Rapid Refresh (HRRR), (Benjamin et al.

2016a,b) and in some cases, the experimental versions

of these models. Links to each model forecast appear

in the upper-left corner of the WVFT web page for

each ARO so the user can select a model to view.

Superimposed upon the observations and forecasts

are the minimum thresholds of upslope wind speed and

direction, IWV, and IWV flux found to be needed for

extremeprecipitation (Neiman et al. 2009). The thresholds

were originally determined for Bodega Bay (BBY; Fig. 2)

and inwinter 2015/16 all stations used theBBY thresholds.

To develop these thresholds, Neiman et al. (2009) ex-

amined precipitation events observed over four winter

seasons (WYs 2001, 2004, 2005, and 2006) by the ARO

at BBY and at a downwind coastal mountain site

[Cazadero (CZC); 475-m elevation] and found that the

heavier (.10mmh21) orographic precipitation events

occurred almost exclusively when the upslope compo-

nent of the wind between 850 and 1150m AGL ex-

ceeded 12.5m s21 and the IWV exceeded 2 cm (relating

to an IWV flux threshold of 25 cmms21). The upslope

layer is defined as the 300-m layer of wind profiler ob-

servations surrounding the 1-km level where the corre-

lation between upslopewind and orographic precipitation

is maximized (Neiman et al. 2009). This 12.5m s21 wind

threshold is consistent with Waliser and Guan’s (2017)

findings that surface winds of 12m s21 are associated

with atmospheric river events around the globe, in-

cluding the west coast of the United States. It is these

thresholds that provide a means to diagnose the oro-

graphic forcing components of precipitation and are a

value-added aspect of the WVFT.

Over the years, visual inspection of the WVFT

revealed discrepancies, sometimes quite large, between

the 3-h precipitation forecasts and the observations, yet

the forecasts of winds, IWV, and IWV flux appeared

to more closely match the observations much of the time.

The focus of this paper is to evaluate theWVFT forecasts

at eight sites (Fig. 2, Table 1) that had all the requisite

instrumentation to produce the tool during winter

2015/16. We quantify the precipitation forecast errors

for each site, as well as the ‘‘ingredients’’ of the oro-

graphic precipitation—upslope winds andmoisture. The

WVFT forecasts have not previously been evaluated in

this way.

Five of the ARO sites during our study period of

winter 2015/16 were near the coast (Fig. 2): Forks,

Washington (FKS); Astoria, Oregon (AST); Northbend,

Oregon (OTH); Cazadero, California (CZC); and

Bodega Bay, California (BBY). Troutdale, Oregon

(TDE), was ;160 km inland. Wasco, Oregon (WCO),

and Chico, California (CCO), were inland stations

that hadmountain ranges between them and the coast.

Evaluations of HRRR and RAP precipitation fore-

casts found in the current literature tend to focus on

either wintertime precipitation type, such as evaluations

of model forecasts of rain, snow, and mixed-phase pre-

cipitation (Ikeda et al. 2013; Benjamin et al. 2016a; Elmore

et al. 2015) or the characteristics of warm season con-

vection (Pinto et al. 2015; Hwang et al. 2015; Cai and

Dumais 2015), rather than quantitative precipitation

forecasts (QPF). Studies that include evaluations of

HRRR or RAP QPF include Peckham et al. (2016),
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Zhu et al. (2013), Bytheway and Kummerow (2015),

and Gowan et al. (2018). Except for Gowan et al.

(2018), these evaluations focused on precipitation east

of the Rocky Mountains. Thus, our study is relatively

unique in that it focuses on HRRR and RAP QPF

evaluations in the complex terrain of the western

United States.

Given that the operational versions of HRRR and

RAP have been upgraded since this analysis was final-

ized, and the model developers continually work to

improve the models, this study should be considered a

snapshot of WVFT performance for one winter, pro-

viding insight and quantifications of errors in the fore-

casts presented in the WVFT.

FIG. 1. Water vapor flux tool for the FKS station from 1200 UTC 27 Jan 2016 to 1200 UTC 29 Jan 2016 (note that time increases from

right to left along the x axis). All values are hourly averages; all forecasts are 3-h forecasts. (top) Observed and forecasted wind profiles

(the vertical bar in the top plot separates observed from forecasted variables; this also applies to the middle and bottom panels), observed

snow level (black dots), and adjusted forecasted freezing level (black dashed line). (middle)Observed and forecasted winds averaged over

the controlling wind layer, as designated by the horizontal lines in the top panel at 750 and 1250m MSL. Observed and forecasted total

wind speed is indicated by the brown bars and ‘‘T’’ bars, respectively. The middle panel also includes the observed and forecasted IWV

(solid and dashed blue lines, respectively). (bottom) Observed and forecasted precipitation (green bars and ‘‘T’’ bars, respectively) and

observed and forecasted IWV flux (solid and dashed dark blue lines, respectively). Flags5 50 kts (1 kt’ 0.51m s21); barbs5 10 kts; half-

barbs 5 5 kts; wind speed is color coded; the units for the rest of the measurements are indicated in the y-axis labels. While the tool

is posted online in English units, the accompanying online text files and the analysis in this paper are in SI units.
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2. The water vapor flux tool

a. Details of the WVFT

The example of the NOAA WVFT in Fig. 1 shows

a rainy period at FKS, a station near the Olympic

Mountains of northwest Washington at an elevation

of 95m (Table 1, Fig. 2). The hourly wind profiles in

the top panel of the tool and to the right of the vertical

line were measured by a 449-MHz wind-profiling radar

(profiler), and for this example, the predicted wind

profiles to the left of the line were from the RAP op-

erational runs. Two horizontal lines at 750 and 1250m

bracket the level of winds found most likely to drive

orographic precipitation at CZC (Neiman et al. 2009;

White et al. 2012, 2013). In their paper, Neiman et al.

(2009) determined that winds between 1408 and

3208 azimuth and 850–1150m MSL were key to pro-

ducing extreme ($10mmh21) orographic precipitation

FIG. 2. Elevation (mMSL)map showing the location of the eight

stations (pink dots) that supported the water vapor flux tool during

winter 2015/16. Forks,WA (FKS), Astoria, OR (AST), Northbend,

OR (OTH), Cazadero, CA (CZC), Bodega Bay, CA (BBY),

Troutdale, OR (TDE), Wasco, OR (WCO), and Chico, CA (CCO).

More information about the stations can be found in Table 1.
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at CZC. Neiman et al. (2009) referred to this layer as the

upslope wind layer.

This upslope wind layer and its associated localized

orographic precipitation enhancement is likely different

at each site in the network. However, the upslope wind

layer heights from BBY/CZC were used as a default at

all other stations because an extended optimization anal-

ysis has yet to be conducted at these stations. The term

total wind layer has been adopted for use in the WVFT

at the other stations where the upslope component that

drives the orographic precipitation has not yet been de-

termined, and the total wind is used instead in theWVFT.

To avoid these differences in definition, for the remainder

of this paper we will refer to the total wind layer and the

upslope wind layer both as the controlling wind layer.

The upper panel also shows the observed snow level

(dots) and forecasted freezing level (dashed line). The

forecasted freezing level on the tool has been adjusted

downward by 233m, corresponding to the average offset

between the measured snow level and the freezing level,

based on White et al. (2010). The middle plot shows

observed and forecasted wind speed (solid brown bars

and ‘‘T’’ bars, respectively) in the controlling wind layer

bracketed by the two horizontal lines in the upper panel.

The middle panel also shows observed and forecasted

IWV (solid and dashed lines, respectively) and the

IWV threshold for possible extreme precipitation (blue

horizontal line). The bottom panel shows observed and

forecasted IWV flux (solid and dashed lines, respec-

tively) and the observed and forecasted precipitation

(solid green bars and T bars, respectively).

Precipitation forecasts are the main topic of this pa-

per, but to understand these forecasts and to provide a

context for the precipitation forecast analysis, we also

assess the controlling wind layer, IWV, and IWV flux

predictions. Text files listing all of the observations and

3-h model forecasts shown in the tool are also available

on the WVFT website. We used these text files for the

analysis in this paper.

b. The observations

Figure 2 is a terrain map showing the locations of

the eight sites where model forecasts were evaluated.

Figure 3 shows the total observed and forecasted pre-

cipitation at each site for the study period (1 December

2015–31 March 2016). Table 1 gives more information

about the sites, including total observed precipitation for

the study period and the relevant station instrumentation.

The stations are arranged from most (top) to least (bot-

tom) precipitation for the 4-month study period; the top

four stations were coastal stations that received more

than 1200mm of precipitation over the study period.

For context, the Stage IV precipitation measurements

(Lin and Mitchell 2005) for the study period are shown

in Fig. 4. FKS and CZC were not only coastal stations,

but also were elevated above sea level (95 and 478m,

respectively) and located on the windward side of the

Coast Range. TDE is near the Columbia River,;160km

from the coastline and located on the windward side of

the Cascade Range. BBY, a coastal station, received less

than half the precipitation received at nearby CZC be-

cause of lack of orographic lift relative to the CZC site,

and it was south of the majority of the storm tracks

(Fig. 4). Both CCO andWCOwere inland stations. CCO

was in the Central Valley of California. WCO was on an

elevated plateau in Oregon and located in the lee of the

Cascade Range, in a rain shadow.

Since the WVFT is a near-real-time tool, the obser-

vations and forecasts of key parameters were evaluated

‘‘as is,’’ with no additional quality control. However, 1-h

observation gaps were filled using linear interpolation,

mainly to account for the fact that the IWV observation

was usually missing during the last hour of each day and

we wanted to include as many IWV forecast–observation

pairs as possible. Profiler derived winds were objectively

quality controlled using an enhanced real-time version

of the vertical–temporal continuity method described

by Weber et al. (1993) and have a ;1ms21 accuracy

(Neiman et al. 2009). Precipitation gauge data are not

quality controlled for this near-real-time tool. However,

PSD uses Texas Electronics tipping-bucket rain gauges,

without a wind screen, which have an accuracy of 61.0%

up to 50mmh21 (https://www.campbellsci.com/te525-l),

which far exceeds the maximum observed hourly

FIG. 3. Total observed and forecasted precipitation during the

study period, 1 Dec 2015–31 Mar 2016 (mm). The observed pre-

cipitation comes from rain gauge data at each ARO. The fore-

casted precipitation is the sum of the HRRR and RAP operational

3-h forecasts at the grid point closest to each station.
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precipitation value of 19.3mm at CZC that occurred

during our study period. Without the wind screen, the

gauges are likely undersampling the total precipitation,

especially during windy conditions. However, at the

station with the highest elevation and greatest rain

rates, CZC, rain gauge data consistently compared

well with a collocated disdrometer (Clark King 2018,

personal communication). IWV measurements are de-

rived from a GPS receiver collocated with the surface

meteorology measurements (Bevis et al. 1992; Duan

et al. 1996; Gutman et al. 2004; and White et al. 2013)

and have a ;1-mm accuracy (Neiman et al. 2009).

According to Gutman et al. (2004) GPS ‘‘. . .retrieval

accuracies are comparable to, or better than, integrated

rawinsonde measurements without the well-known

problems at high humidity or low temperature.’’

c. The forecasts

The real-time display of the WVFT includes model

output from NOAA/NCEP’s operational Rapid Re-

fresh (RAP) assimilation and modeling system and the

HRRR model, as well as experimental versions of one

or both of these models (referred to as ‘‘rapexp’’ and

‘‘hrrrexp’’ on the tool web pages). The 3-h forecast

values shown in the tool are from the model grid point

closest to the station. Since the experimental simulations

were not always complete (i.e., there could be several

missing hourly forecasts on any given day), we focused

here on the versions of RAP and HRRR that were op-

erational during the study period. All versions of the

RAP [and its predecessor the Rapid Update Cycle

(RUC)] are described in detail in Benjamin et al. (2016b),

where the RAP and HRRR versions evaluated in this

paper are referred to asRAP v2 andHRRR.TheRAPv3

and HRRR v2 discussed in Benjamin et al. (2016b) be-

came operational in August 2016.

TheRAP andHRRRwere updated hourly, with RAP

producing hourly forecasts out to 18 h, and the HRRR

producing forecasts out to 15h, lending themselves well

for a decision support tool such as the WVFT. The

NOAA Gridpoint Statistical Interpolation (GSI) anal-

ysis system is used to assimilate radar reflectivity, and

near-real-time data from rawinsondes, wind profilers

(including the wind profiler data obtained at the PSD

AROs), aircraft, surface meteorological observations,

Geostationary Operational Environmental Satellite

(GOES), and Global Positioning System (GPS) water

vapor into the RAP (see Benjamin et al. 2016b, their

Table 4, for details on the assimilated observations). The

HRRR is nested within the RAP, with horizontal grid

spacing of 3 km (vs. the RAP 13-km grid spacing). The

RAP domain covered North America, and the HRRR

domain covered the contiguous United States.

The HRRR is a convection-allowing model and fore-

casts also include the assimilation of radar reflectivity.

According to Benjamin et al. (2016b), it is the 3D as-

similation of radar reflectivity data, and the assimila-

tion of 3D latent heating using 3D radar reflectivity

data, or proxy reflectivity from lightning data, that sets

the RAP and HRRR apart from other models. How-

ever, the assimilation of operational weather radar

data in the west will be limited by radar beam blockage

and other issues related to complex terrain (Bytheway

et al. 2019 and Matrosov et al. 2014), as well as lack of

upstream data over the Pacific Ocean. The develop-

ment and evolution of the HRRR is also documented

in Benjamin et al. (2016b).

3. Forecast evaluation metrics

a. Issues in evaluating precipitation forecasts

Evaluations of precipitation forecasts can be prob-

lematic, starting with the representativeness and accu-

racy of the measurements used to evaluate the model.

Colle et al. (1999, 2000, and references therein) explain

many of the issues associated with precipitation mea-

surements, including, but not limited to, excessive evap-

oration fromheated rain gauges, wind effects, and freezing

FIG. 4. Total Stage IV liquid equivalent precipitation analysis for

the entire study period (1 Dec 2015–31 Mar 2016).
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precipitation. All of these problems can lead to mea-

suring less precipitation than actually fell. Precipitation

measurement accuracy issues are further complicated

when looking at precipitation forecasts in complex ter-

rain (Colle et al. 1999, 2000).

Yet even more complications arise when evaluating

high-resolution model output (Mass et al. 2002; Grams

et al. 2006), such as slight misplacements in forecast

precipitation location that contribute to large errors when

using traditional verification metrics (Ebert 2008; Han

and Szunyogh 2016; Ikeda et al. 2013 and references

therein) or the location of the precipitation is accurate but

the timing is off (Ikeda et al. 2013). These types of situ-

ations are most likely associated with convective precip-

itation forecasts.

Despite these issues, we employ a point-to-point com-

parison of the observed and forecasted meteorological

variables presented in the WVFT to ascertain how well

the RAP and HRRR performed at each station in near–

real time, because this method is compatible with the

design of theWVFT. Our study period covers the months

of December, January, February, and March, a period

more likely to include widespread, day-long or multi-day-

long events versus convective hit-or-miss-type events.

Therefore, the precipitation events tended to be large-

scale synoptically driven events, not mesoscale convec-

tive events. However, there are still frequently occurring

mesoscale responses and accompanying precipitation

enhancements in frontogenetic flowwithin these synoptic

systems such as flow-parallel banded structures involving

slant-wise convection that will impact forecasting skill at a

single grid point.

b. Metrics for evaluation

1) RMSE, UNBIASED RMSE, AND STANDARD

DEVIATIONS

The root-mean-squared error (RMSE), unbiased root-

mean-squared error (RMSEUB), and standard deviation

of the observations (sobs) and forecasts (sf) were com-

puted for each hourly wind, precipitation, IWV, and IWV

flux forecast–observation pair found in the study period,

including hours without precipitation, at the eight sta-

tions, after Keyser and Anthes (1977) and Pielke (2002,

p. 464). The RMSE gives an overall snapshot of forecast

performance by estimating an average error (Willmott

1982; Wilks 2006), however, RMSEs are known to be

sensitive to large errors (Colle et al. 1999; Wilks 2006).

The RMSEUB is computed the same way as the RMSE,

after the means of the forecasts and the observations are

removed from the forecasts and observations, respec-

tively. Table 2 lists the number of forecast–observation

pairs used for each variable at each station for both the

HRRR and the RAP.

Keyser and Anthes (1977) suggest comparing the

RMSE, RMSEUB, and sf to sobs. To demonstrate skill,

sf and sobs should be approximately equal, and the

RMSE and RMSEUB of the modeled variable should

be less than sobs. Meeting these requirements implies

that the magnitude of the errors in the forecasts and

the spread of the modeled variables were reasonable

compared to the observations.

In this analysis, sf and sobs were considered approx-

imately equal if sf was within 610% of sobs. The range

610% was arbitrarily chosen by the authors. Through-

out this paper the comparisons among the forecasted

and observed standard deviations, RMSEs, and unbi-

ased RMSEs will be referred to as the ‘‘K&A criteria,’’

after Keyser andAnthes (1977). Our results showed that

inmost cases there was very little difference between the

RMSE and the RMSEUB values.

2) MEAN ERROR

The mean error (ME) or the average difference be-

tween the hourly observations and forecasts for precip-

itation, IWV, IWV flux, and the u and y components of

the wind were calculated for all observation and forecast

pairs, including hours without precipitation. The mean

errors indicate if the models tended to overpredict or

underpredict the variables of interest, showing the di-

rection (positive or negative) and magnitude of forecast

biases over the study period (Wilks 2006). In a perfect

forecast ME 5 0.

3) FREQUENCY BIAS SCORES

To investigate if the models did a better job of pre-

dicting some ranges of precipitation, IWV, winds, or

IWV flux, relative to others, frequency bias scores [FBS;

Eq. (1)] were computed for each variable at each station,

using the hourly observation and model pairs, including

TABLE 2. The number of observation–forecast pairs for each variable at each site for both models (HRRR/RAP).

FKS AST CZC OTH TDE BBY CCO WCO

Precipitation 2928/2928 2928/2928 2928/2928 2928/2928 2928/2928 2928/2928 2928/2928 2928/2928

IWV 2465/2469 2388/2391 2484/2489 2684/2684 2013/2019 2484/2489 707/707 2423/2425

Winds 2695/2689 2794/2793 2785/2791 2805/2798 2820/2822 2785/2791 2764/2771 2793/2795

IWV flux 2349/2348 2369/2372 2472/2476 2668/2662 2013/2019 2472/2476 679/679 2395/2397
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FIG. 5. The 3-h precipitation forecasts for each station: (a) mean error (ME) and root mean squared error

(RMSE) for RAP and HRRR precipitation forecasts; (b) frequency bias scores for RAP precipitation forecasts;

and (c) frequency bias scores for HRRR precipitation forecasts. The dash–dot lines represent inland stations. For

reference, a solid black line at FBS5 1 is plotted; for FBS scores. 1 themodel is overpredicting and for FBS scores

, 1 the model is underpredicting. To compute the frequency bias scores a minimum of five matching observation–

forecast pairs for each threshold value was required. The dashed vertical line at x5 1.27 and 10.933mm indicates a

shift in the size of the increment between thresholds. Error bars at the 95% confidence interval have been added to

the ME. FBS plots with 95% confidence intervals are in the appendix.
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hours without precipitation. The thresholds for FBS

calculations for each variable are indicated on the x axes

of FBS plots (found in Figs. 5 and 7–10). A 95% confi-

dence interval for the precipitation FBS were calculated

using the bootstrapping method described by Hamill

(1999). To account for serial dependence in the pre-

cipitation forecasts (as determined by the Spearman rank

correlation), the bootstrapping was accomplished by

randomly reshuffling the hourly forecasts in 24-h blocks.

Figures showing the differences in FBS between theRAP

and HRRR, with the 95% confidence interval, appear in

the appendix.

A score of FBS5 1 means there was no overprediction

or underprediction. However, as Mass et al. (2002) point

out, because of potential undercatchment issues in pre-

cipitation measurements in complex terrain, a slightly

positive FBS for precipitation does not necessarily indi-

cate an overprediction by the model. According to Colle

et al. (1999) the FBS is not as sensitive to infrequent but

large errors in forecasts or observations as the RMSE is,

since all forecast–observation pairs are equally weighted

in the FBS calculations while in calculating the RMSE,

errors are squared before averaging, allowing large errors

to dominate the result:

bias score5
# of forecasts$ threshold

# of observations$ threshold
. (1)

4) EQUITABLE THREAT SCORE

The equitable threat score (ETS) is a skill score based

on a 23 2 contingency table of yes/no observations and

forecasts of a given event, in this case precipitation (Wilks

2006). The table accounts for four possible combinations

of events: Precipitation was 1) forecast and observed;

2) forecast and not observed; 3) not forecast and observed;

and 4) not forecast and not observed. The ETS is a

measure of correct forecast and observed pairs relative

to the number of times the event was forecast or ob-

served, corrected for the number of correct ‘‘yes’’ fore-

casts that may occur by chance. The 95% confidence

interval for the ETS was calculated using the boot-

strapping method described in the previous section

for the same hourly precipitation thresholds used in the

frequency bias plots, as indicated by the values on the x

axis of Fig. 6. Figures showing the differences in ETS

between the RAP and HRRR, with a 95% confidence

interval, appear in the appendix. In a perfect forecast

ETS 5 1. A forecast with no skill will have an ETS # 0.

FIG. 6. Equitable threat scores for (a) RAP and (b) HRRR 3-h precipitation forecasts, using the same thresholds as

the frequency bias scores. ETS plots with 95% confidence intervals are in the appendix.
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5) PERCENTAGE OF OBSERVED PRECIPITATION

The percent of observed precipitation forecasted was

evaluated.

Each metric described here only tells a part of the

forecast evaluation story on its own. For instance, RMSE

only gives information about the magnitude of the fore-

cast error, theME gives an overall bias with no indication

of skill, the FBS only gives information about systematic

overprediction or underprediction occurrences at speci-

fied thresholds, and the ETS gives information about

forecast skill, but no information about forecast precipi-

tation amounts (Wilks 2006). There is no single evalua-

tion metric that can convey a model’s forecast skill and

accuracy, so it is important to include several evalua-

tion metrics to assess a forecast. It is up to the fore-

caster to decide what metrics most directly apply to any

given meteorological situation.

4. Results

a. Precipitation forecasts

For the following discussion we break up the ARO

stations into three groups: 1) stations where both the

RAP and the HRRR underpredicted the study pe-

riod total precipitation (FKS, AST, CZC, and CCO);

2) stations where the RAP overpredicted the study

period precipitation and the HRRR underpredicted

the precipitation (OTH and TDE); and 3) stations

where both models overpredicted the study period pre-

cipitation (BBY and WCO) (Fig. 3).

1) BOTH MODELS UNDERPREDICTED: FKS, AST,
CZC, AND CCO

Both models underpredicted the total study period

precipitation at the three stations that received the most

precipitation over the study period (FKS, AST, and

CZC) and at CCO, the inland Central Valley station

(Fig. 3). The largest percentage underpredictions among

all of the stations, not just in this group, occurred at AST

and CCO by the HRRR, where the total HRRR fore-

cast precipitation was 69% of the observed. The un-

derpredictions at FKS, AST and CZC are consistent

with the Lin et al. (2013) MM5 precipitation simulations

in the Pacific Northwest (their Figs. 2 and 5), which in-

dicated underpredictions at several coastal observation

sites, including AST.

In Fig. 5a we see that the largest magnitude mean

errors among all stations were the underpredictions at

FKS and AST in the HRRR forecasts (0.153mm in both

cases). The largest RMSEs among all of the stations

occurred at CZC (1.37mm in the RAP, 1.47mm in

the HRRR).

RAP precipitation forecasts at FKS had a standard

deviation, RMSE, andRMSEUB of the right magnitudes

to meet the K&A criteria (Table 3), implying that the

spread of the forecast values and magnitude of errors

were reasonable compared to the observations.However,

even though the RMSE and RMSEUB were ,sobs, they

were approaching the magnitude of sobs. For precipi-

tation this was the only site among all stations where

both models met the K&A criteria. The standard de-

viations at the other three sites, AST, CZC, and CCO,

were too small to be considered approximately equal

to those of the measurements, indicating that the

models were not properly representing the variability,

or spread, among the hourly precipitation forecasts at

these stations.

The FBS (Figs. 5b,c and the appendix) give an indica-

tion of how each model did at predicting hourly precipi-

tation totals at each site, binned by threshold values. For

the small precipitation rates the RAP (Fig. 5b) tended to

overpredict precipitation at CZC and underpredict pre-

cipitation at AST and CCO. The RAP FBS for the low

values at FKS were close to 1, a possible explanation for

the RAP FKS precipitation forecast meeting the K&A

criteria—the model did well at predicting the smaller

precipitation amounts at FKS. As hourly observed pre-

cipitation amounts increased, the RAP forecasts under-

predicted precipitation at FKS, AST, CZC, and CCO;

in fact, at the greatest observed precipitation values

these stations had the lowest FBS among all stations.

TABLE 3. For the precipitation forecast from each model, the

standard deviation of the forecast (sf) is compared to the standard

deviation of the observations (sobs). The root-mean-squared error

(RMSE) and the unbiased root-mean-squared error (RMSEUB)

of the forecast are also compared to sobs. If sf ’ sobs, and if the

RMSE and RMSEUB are ,sobs, then the forecast at the station

meets the Keyser and Anthes (1977) criteria, as explained in the

text. Bolded text indicates the criteria were met.

sf/sobs RMSE/sobs RMSEUB/sobs

HRRR FKS 0.7 0.9 0.9

AST 0.8 1.0 1.0

CZC 0.7 0.9 0.9

OTH 1.0 1.0 1.0

TDE 0.8 1.0 1.0

BBY 1.1 1.1 1.1

CCO 0.7 1.0 1.0

WCO 1.2 1.2 1.2

RAP FKS 0.9 0.9 0.9
AST 0.8 0.9 0.9

CZC 0.8 0.8 0.8

OTH 1.0 1.1 1.0

TDE 1.1 1.1 1.1

BBY 1.1 1.0 1.0

CCO 0.8 0.9 0.9

WCO 1.1 1.1 1.1
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The HRRR FBS (Fig. 5c) showed that precipitation at

these four stations tended to be underpredicted at the

greatest observed values, leading to the greatest un-

derpredictions of the study period, as noted above. In

fact, FBS for both models reached ,0.5 for some ob-

served values, meaning that more than half of the time

these hourly values were underforecast. The ETS for

these stations showed a decline in skill as the observed

precipitation increased (Fig. 6). At these stations the

differences in FBS and ETS between the two models

were not statistically significant at most threshold values

as indicated by the 95% confidence interval plots shown

in the appendix.

2) RAP OVERPREDICTED, HRRR UNDER-

PREDICTED: OTH AND TDE

The RAP overpredicted the study period precipita-

tion at TDE and OTH by 149% and 117%, respectively.

The HRRR study-period forecasts for TDE and OTH,

however, were close to the observed precipitation values

(93% and 89%, respectively). At both stations the MEs

were positive for the RAP and negative for the HRRR

FIG. 7. As in Fig. 5, but for integrated water vapor.
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(Fig. 5a). K&A criteria analysis showed that the RMSEs

and RMSEUBs were too large for both models at both

locations, and the HRRR sf at TDE was too small

(Table 3).

RAP FBS for TDE (Fig. 5b and the appendix) re-

mained.1 at almost all values, consistent with the larger

positive ME, the overall overprediction of precipitation

at TDE for the study period, and, as will be shown later,

FBS . 1 for IWV flux. RAP frequency bias scores for

OTH indicated overpredictions of precipitation at the

smallest and largest hourly amounts, and a bias score, 1

for hourly values in the middle range. HRRR FBS for

TDE showed underpredicted precipitation at all ob-

served values, and underpredicted precipitation at OTH

except for the largest observed values. The ETS gener-

ally showed a decline in skill as precipitation increased

at these stations, but the decline at TDE was not steady.

The differences in the RAP and HRRR FBS at TDE

and OTH were statistically significant at the smaller pre-

cipitation thresholds; the differences in ETS scores were

not statistically significant (see the appendix).

For the hours of heaviest precipitation at TDE, the

RAP was likely to overpredict precipitation, whereas

theHRRRwasmore likely to underpredict it. For OTH,

the results were mixed for values near 1.93mm (close to

1 in the RAP forecasts and,1 for theHRRR forecasts),

fitting in with the MEs and study period totals.

3) BOTH OVERPREDICTED: BBY AND WCO

BBY and WCO were the only stations where both

the RAP and the HRRR overpredicted the study period

precipitation total (Fig. 3) and had positiveMEs (Fig. 5a).

The largest percentage overpredictions of precipitation

among all of the stations occurred at WCO, with both

models predicting 184% of the observed precipitation.

However, theHRRRstudy period total at BBYwas close

to observed (105%). Looking at the FBS plots, the RAP

and HRRR overprediction of precipitation at WCO was

very apparent (Figs. 5b,c and the appendix). The RMSEs

and RMSEUBs for the BBY andWCO forecasts were too

large tomeet theK&A criteria (Table 3). The differences

in FBS and ETS between the two models were not sta-

tistically significant at these two sites (see the appendix).

4) SUMMARY OF PRECIPITATION FORECAST

ANALYSIS

Our forecast evaluation metrics showed that neither

the RAP nor the HRRR precipitation forecasts, with

grid spacings of 13 and 3km, respectively, had a strong

performance advantage over the other in forecasting

precipitation at our eight stations, at least using these

traditional nearest-point metrics. ETS for both models

showed an overall decline in forecast skill as the observed

hourly precipitation amount increased, and FBS for

precipitation echoed this declining skill.

The RAP tended to overpredict smaller hourly

amounts, except for FKS, AST, and CCO, although,

if considering potential undercatchment issues (Colle

et al. 1999 and 2000), the slightly positive FBS may not

necessarily indicate an overforecast (Mass et al. 2002,

Gowan et al. 2018). For instance, if a rain gauge con-

sistently did not properly collect the precipitation that

fell at a location because of strong winds, an FBS

slightly.1 (e.g., as seen in the RAP forecasts for OTH,

BBY, and CZC at the smallest observed amounts)

may indicate accurate precipitation forecasts at these

amounts. The HRRR tended to underpredict the av-

erage hourly amounts at all stations except WCO. FBS

became worse at the larger hourly precipitation values

for some stations, with both models underpredicting

larger precipitation values at AST, CCO, CZC, and

FKS. Accurately forecasting these large precipitation

rates is critical for forecasting heavy precipitation

events at these sites, which could potentially lead to

flash flooding. WCO, the station receiving the least

amount of precipitation, was an outlier in that both

models tended to overpredict precipitation at most

observed amounts.

Only RAP precipitation forecasts at FKS met the

K&A criteria, but in all cases, including this one, the

RMSEs were large compared to the sobs. Except for

the HRRR forecast at WCO, the standard deviations of

the forecasts that did not meet the K&A criteria tended

to be too small, indicating a lack of spread in the precip-

itation forecasts, probably because of the underprediction

of larger hourly values. Overall, the average errors in the

precipitation forecasts were large and the spread among

the values was small relative to sobs.

TABLE 4. As in Table 3, except for integrated water vapor.

sf/sobs RMSE/sobs RMSEUB/sobs

HRRR FKS 0.9 0.3 0.3
AST 1.0 0.3 0.3

CZC — — —

OTH 1.0 0.3 0.3

TDE 1.0 0.3 0.3
BBY 1.0 0.3 0.3

CCO — — —

WCO 1.0 0.3 0.3

RAP FKS 0.9 0.4 0.3
AST 1.0 0.3 0.2

CZC — — —

OTH 1.0 0.3 0.3

TDE 1.0 0.3 0.2
BBY 1.0 0.3 0.3

CCO — — —

WCO 1.0 0.3 0.3
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Model-predicted precipitation is directly related to

the water vapor flux to a site, which is the product of the

vertically integratedwater vapor and the controlling-layer

wind speeds. In the following subsections we evaluate

these components.

b. First component: Integrated water vapor forecasts

We first evaluate integrated water vapor forecasts,

which indicate how well the models predicted the mois-

ture available for precipitation production. Figure 7a

shows the MEs and RMSEs for both RAP and HRRR

forecasts of IWV at all stations that had at least 2000h

(out of 2928 total hours) of IWV measurements (IWV

analysis was not performed at two sites, CZC, because

IWV was not measured there, and CCO because there

were too many data outages during the study period).

FKS, AST, and TDE IWV forecasts were negatively

biased, whereas BBY and WCO forecasts were posi-

tively biased. BBY and WCO were the only stations

where both the RAP and HRRR overforecasted the

total precipitation.

FBS for IWV (Figs. 7b,c) indicated how hourly IWV

predictions compared to hourly IWV measurements at

a range of thresholded values. For both models, hourly

FIG. 8. As in Fig. 5, but for the u component of the wind.
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averaged IWV forecasts of#0.5 cm were excellent at all

sites, with FBS ’ 1. Model performance diverged at

values . 0.5 cm. FKS, AST, and TDE bias scores

showed IWV to be underpredicted by both models at

most values . 1.0 cm, with FKS having the worst per-

formance (the most underforecasting) for both models.

OTH and BBY IWV FBS were close to 1 at most values

observed. WCO was the only station showing an over-

prediction of IWV at all values. 0.5 cm, which likely led

to the overforecasting of precipitation at this station.

IWV forecasts by both models for all stations had

RMSE, RMSEUB, and sf values that compared well to

the standard deviations of the observations, indicating

that the forecasts were realistic (Table 4). Our IWV

MEs were consistent with Wick et al. (2013) who found

similar results when evaluating operational ensemble

forecast systems. The greatest problems in the IWV

forecasts were that neither the RAP nor the HRRR

forecasted larger (.2.0 cm) IWV values at FKS and

AST, the two stations that received the heaviest

FIG. 9. As in Fig. 5, but for the y component of the wind.
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precipitation, at a high enough frequency, as indicated

by FBS.

c. Second component: Wind forecasts

Next we look at the wind forecasts in the elevated

controlling wind layer, the layer responsible for advecting

moisture toward the complex terrain of the coast. For the

analysis of HRRR and RAP wind forecasts, the hourly

averaged winds in the controlling layer were decomposed

into u and y components, and the ME, RMSE, and

RMSEUB were calculated for both components in

each model. Both models had positive mean errors in

the u component of the wind at all stations (Fig. 8a),

the RAP having larger mean errors than the HRRR

in every case. For the y-component winds (Fig. 9a), all

stations except CCO and WCO had positive mean

errors in both models, with CCO the only station with

negative mean errors in both models.

FBS were calculated for the positive values of the u

and y components of the wind (Figs. 8b,c and 9b,c),

appropriate for the southwesterly flows associated with

high-precipitation events along the west coast. The

HRRR and RAP FBS for the u and y components of the

windwere’1 for values# 10ms21, with the exception of

CCO, which saw large u-component overpredictions in

bothmodels as wind speed increased (Figs. 8b,c and 9b,c).

Themodels performed less accurately at the greater wind

speeds that are associated with greater precipitation

events, tending to overpredict these greater values at

most stations.

HRRR and RAP forecasts of the u component met

the K&A criteria at all stations (Table 5), meaning that

the errors and spread in the modeled winds at these

stations, averaged over the controlling wind layer, were

reasonable when compared to sobs, although at CCO,

the RMSE and RMSEUB were approaching sobs. For

the y component of the wind (Table 6), sf for theHRRR

and RAP TDE forecasts slightly exceeded sobs, making

TDE the only station not meeting the K&A criteria for

the wind forecasts. CCO y-component forecasts were

better than the u-component forecasts.

CCO lies in the Central Valley of California (Fig. 2). It

is possible that the models failed to characterize the

depth of the Sierra barrier jet accurately (Neiman et al.

2014), leading to an overprediction of the u component

of the wind and a slight underprediction of the y com-

ponent. The low-level easterly gap flows that dominate

at TDE may not be adequately forecast by the models

because of complex interactions between this gap flow

and the moist, westerly overrunning flow originating

over the Pacific that frequently occurs with land-falling

storms. The y-component winds at FKS, AST, and

OTH tended to be overpredicted at larger values.

Overall, the models had good FBS at wind component

values # 10m s21, but tended to overforecast the

winds . 10m s21 at some stations.

d. Integrated water vapor flux forecasts

Integrated water vapor flux is the product of wind

speed in the controlling wind layer and IWV; thus the

errors in the wind and IWV forecasts will have an impact

on the IWV flux forecasts. The IWV flux MEs for both

models were positive inmost cases, with only FKS having

very small negative MEs (Fig. 10). The 3-h forecasts

from both models at FKS and AST underpredicted IWV

(as shown by the IWV ME and FBS plots, Fig. 7), but

overpredicted the winds at greater values (as seen in the

u- and y-component ME and FBS plots, Figs. 8 and 9).

This offsetting of forecast errors produced very small

MEs in IWV flux predictions at FKS and AST. TDE also

TABLE 5. As in Table 3, except for the u component of the wind.

sf/sobs RMSE/sobs RMSEUB/sobs

HRRR FKS 1.0 0.5 0.4
AST 1.1 0.4 0.4

CZC — — —

OTH 1.1 0.4 0.4

TDE 1.1 0.4 0.4
BBY 1.0 0.4 0.4

CCO 1.1 0.8 0.8

WCO 1.1 0.4 0.4

RAP FKS 1.0 0.5 0.4
AST 1.0 0.4 0.4

CZC — — —

OTH 1.1 0.4 0.4

TDE 1.0 0.5 0.4
BBY 1.0 0.4 0.4

CCO 1.1 0.8 0.8

WCO 1.1 0.4 0.4

TABLE 6. As in Table 3, except for the y component of the wind.

sf/sobs RMSE/sobs RMSEUB/sobs

HRRR FKS 1.1 0.3 0.3
AST 1.0 0.4 0.4

CZC — — —

OTH 1.1 0.4 0.4

TDE 1.2 0.5 0.5

BBY 1.0 0.4 0.4

CCO 0.9 0.3 0.3

WCO 1.0 0.4 0.4

RAP FKS 1.1 0.4 0.3
AST 1.1 0.4 0.4

CZC — — —

OTH 1.1 0.4 0.4

TDE 1.3 0.6 0.6

BBY 1.0 0.4 0.4

CCO 0.9 0.3 0.3

WCO 1.0 0.4 0.4
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had underpredictions of IWV compensated for by the

overprediction of winds.

At all stations the RMSE and RMSEUB values for

both models and all stations were less than sobs

(Table 7). The RAP IWV flux forecasts at OTH, TDE,

and WCO did not meet the K&A criteria because sf .
sobs, indicating that these IWV flux forecasts had more

spread than the observations. The problems with the

IWV flux forecasts at OTH, TDE, and WCO become

more apparent when looking at the FBS plots of the

IWV flux forecasts for both models (Figs. 10b,c). There

was a rapid increase in RAP overpredictions of IWV

flux at TDE and WCO as observed IWV flux values

increased. OTH also had larger overpredictions of the

larger values of IWV flux. This overprediction of IWV

flux possibly explains the RAP forecasting too much

precipitation over the study period at OTH, TDE, and

WCO. Only RAP IWV flux forecasts at BBY showed

a tendency to be underpredicted at greater observed

values. IWV flux forecasts# 20 cmms21 had FBS’ 1 in

both models at all stations. Therefore, with the exception

of RAP IWVflux forecasts at BBY, this analysis indicates

that the models advected sufficient moisture to the sta-

tions (in some instances too much moisture) by the con-

trolling wind layer, providing an abundance of IWV flux

forcing for the precipitation forecasts.

FIG. 10. As in Fig. 5, but for the integrated water vapor flux.
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5. Summary

In this paper we evaluated forecasted variables for

an online near-real-time water vapor flux tool: IWV,

controlling-layer winds, IWV flux, and precipitation.

The tool is meant to provide situational awareness and

decision support for detecting high-precipitation events

in the western United States where orographic forcing is

dominant. The goal of the paper was to characterize and

quantify the errors in the tool forecasts, with a particular

interest in the operational RAP and HRRR 3-h lead-

time precipitation forecasts.

The key result is that the precipitation forecasts shown

in theWVFT are likely to be underpredictions for larger

hourly values of precipitation, despite IWV flux fore-

casts that approximately equaled or exceeded the ob-

served in most cases, including at and above the critical

25 cmms21 IWV flux threshold for potential extreme

precipitation. Precipitation forecasts only met the K&A

criteria at one site, whereas the winds, IWV, and IWV

flux met the criteria at most or all sites. Both FKS and

AST (the stations with the most precipitation) did not

have an adequate amount of IWV forecast (as defined

by an FBS$ 1 and anME$ 0) by either the RAP or the

HRRR. In both cases the models did overpredict the

winds, resulting in IWVflux forecasts with an FBS. 1 or

’1, indicating adequate moisture flux was available in

the model, relative to the observations. Yet the precip-

itation was underforecast by both models at most values

at these stations, with the FBS and ETS decreasing

as the observed precipitation values increased. This

implied that the underforecast of IWV had a greater

impact on the accuracy of the precipitation forecast than

the resultant IWV flux forecast at these stations. There

was a similar situation at TDE (IWV was underforecast

but the IWV flux was overforecast), but there were

mixed results with the RAP overforecasting and the

HRRR underforecasting the precipitation. At the op-

posite end of the spectrum, at WCO, the IWV and IWV

flux were overpredicted by both models, and both

models overpredicted the precipitation at this station.

Mixed results occurred at OTH with the RAP over-

predicting IWV flux and precipitation at some values.

According to Ralph et al. (2010), precipitation fore-

casts in complex terrain can be erroneous because of

errors in forecasting lower-tropospheric wind direction

or the structure of blocking phenomena (e.g., a barrier

jet), and cloud microphysics. We have shown that in the

case of the WVFT, the controlling-layer wind forecasts

were reasonable at component speeds # 10ms21, as

indicated by the K&A criteria and FBS, with the ex-

ception that the barrier jet in the Central Valley, af-

fecting forecasts at CCO, and the gap flows at TDEmay

not bewell represented in themodels. Problems with the

wind forecasts at greater speeds, as discussed above,

could have contributed to overforecasts of the precipi-

tation field at some stations.

Possible weaknesses in the models may include reso-

lution of the terrain, the representation of the thermo-

dynamics of approaching storm systems, and the vertical

distribution of moisture. Improved data assimilation to

more accurately capture moisture and wind profiles for

model initialization and improved modeled physical pro-

cesses to more accurately resolve features such as barrier

jets could be considered. The lack of upstream measure-

ments of wind and water vapor may also be an issue for

precipitation forecasts in the western United States.

Potential errors in the vertical velocity field (which is

an important input for microphysical schemes) will re-

sult if the low-level thermodynamic stability is inaccu-

rately forecast by the models. That is, for a site that is

dominated by orographic forcing (like CZC), the cor-

rectly forecasted upslope IWV flux will only result in the

correct QPF if the vertical velocity response is accu-

rately simulated. Likewise, the vertical profiles of ver-

tical velocity and specific humidity can be inaccurately

forecasted, even though the upslope IWV flux is cor-

rectly forecasted. In this case, the input for a micro-

physics scheme will result in an erroneous QPF. In

addition, for sites that aren’t dominated by orographic

forcing, like AST or FKS, using the IWV flux results in

even more ambiguities, since the forcing at these sites is

not predominantly and explicitly provided by the IWV

flux. Even though it is usually coincidental that other

forcings (like frontal and synoptic–dynamic) are phased

with the total IWV-flux plume, these forcings and the

wind field (associated with the flux) are subject to both

magnitude and phase lags and additional forecast errors.

TABLE 7. As in Table 3, except for integrated water vapor flux.

sf/sobs RMSE/sobs RMSEUB/sobs

HRRR FKS 1.0 0.3 0.3
AST 1.0 0.3 0.3

CZC — — —

OTH 1.1 0.4 0.4

TDE 1.1 0.4 0.4
BBY 1.0 0.4 0.4

CCO — — —

WCO 1.1 0.4 0.4

RAP FKS 1.0 0.3 0.3
AST 1.1 0.3 0.3

CZC — — —

OTH 1.2 0.4 0.4

TDE 1.2 0.5 0.5

BBY 1.0 0.4 0.4

CCO — — —

WCO 1.2 0.5 0.5
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FIG. A1. Frequency bias plots with 95% confidence intervals for RAP (blue) and HRRR (orange) precipitation

forecasts.
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FIG. A2. Equitable threat score plots with 95% confidence intervals for RAP (blue) andHRRR (orange) precipitation

forecasts.
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We cannot address microphysics in this paper, but this

analysis, and others, points to the need for additional

research to take place regarding the cloud microphysics

packages included in the RAP and HRRR. Previous

studies have found that how a forecast model handles

graupel aloft (Colle et al. 2005; Lin and Colle 2009), the

intercept for snow-size distribution, and the number of

CCN (Colle et al. 2005) can cause errors in the forecast

of precipitation at the surface. Gowan et al. (2018) found

that HRRR precipitation forecasts near mountain

ranges in Utah and Lake Tahoe tended to be biased low

on the windward slopes and biased high on the leeward

slopes, consistent with Colle et al. (2005) simulations

over the Wasatch Range using MM5. They point to po-

tential problems with the observations, the model mi-

crophysics, or the accurate representation of orographic

precipitation processes. Lin et al. (2013) state that ‘‘it is a

challenge to identify and quantify the sources of pre-

cipitation bias.’’ Their work indicates there are problems

with the bulk microphysical parameterizations, as well as

issues regarding the freezing level relative to the terrain,

with precipitation forecast differences for cold versus

warm storms. This is a topic that could be evaluated in

the future using PSD freezing-level radar measurements.

Our evaluation metrics are based on point-to-point

comparisons, the limitations of which may result in the

penalization of the precipitation forecasts if the place-

ment of the precipitation was off by a small distance but

the amounts were correct, if the timing of the precipi-

tation was off, or because of the horizontal variability

of precipitation in the complex terrain of the western

United States. Mass et al. (2002) also point to data

representativeness and ‘‘. . .deficiencies in the physical

parameterizations of the planetary boundary layer. . .’’

as issues that make it difficult for high-resolution models

to verifywell using traditional point-to-point comparisons,

especially in complex terrain. Bytheway and Kummerow

(2015) found that ‘‘. . .the areal extent of region within

1mmh21 isohyet is frequently too small. . .’’ in theHRRR

precipitation rate forecasts, a possible factor in the lower

FBS seen in our analysis of HRRR hourly precipitation

amounts.

In light of this evaluation of the NOAA WVFT, we

propose that in the future we evaluate ways to improve

the precipitation forecast currently depicted in theWVFT,

such as determining the proper grid points from each

model that could be used to provide a neighborhood

forecast, accounting for surrounding gradients in the

terrain, and presented as a probability of exceedance or

percentiles for given precipitation amounts. We could

also investigate using the maximum and minimum

values from the neighborhood to provide upper and

lower boundaries to the QPF, rather than a forecast

from a single grid point. Also, in the future, HRRR

time-lagged ensemble forecasts could possibly be used

to provide a range of forecast hourly precipitation

amounts for the WVFT sites. Until these time-lagged

forecasts become available, averaging forecasts from

different lead times could be experimentedwith. In turn,

precipitation forecasts from the current and future ver-

sions of the RAP and HRRR will have to be evaluated

to determine if the improved microphysical packages

and data assimilation methods recently implemented

have significantly improved the precipitation forecasts,

particularly at greater precipitation amounts.
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APPENDIX

Precipitation Frequency Bias Scores and Equitable
Threat Scores with 95% Confidence Intervals

Figures A1 and A2 show the frequency bias scores

(FBS) and equitable threat scores (ETS) for the RAP

and HRRR precipitation forecasts, with 95% confi-

dence intervals, to better assess the differences between

the forecasts.
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